15=-1/3q^2+30

Simple and best practice solution for 15=-1/3q^2+30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15=-1/3q^2+30 equation:



15=-1/3q^2+30
We move all terms to the left:
15-(-1/3q^2+30)=0
Domain of the equation: 3q^2+30)!=0
q∈R
We get rid of parentheses
1/3q^2-30+15=0
We multiply all the terms by the denominator
-30*3q^2+15*3q^2+1=0
Wy multiply elements
-90q^2+45q^2+1=0
We add all the numbers together, and all the variables
-45q^2+1=0
a = -45; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-45)·1
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*-45}=\frac{0-6\sqrt{5}}{-90} =-\frac{6\sqrt{5}}{-90} =-\frac{\sqrt{5}}{-15} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*-45}=\frac{0+6\sqrt{5}}{-90} =\frac{6\sqrt{5}}{-90} =\frac{\sqrt{5}}{-15} $

See similar equations:

| 8x+5=4x+​6 | | -18-6k=-1+18k+7 | | 10x-2=25+7x | | 2x+x+20+x+20=180 | | (3v+2)-(v+1)=v+ | | 4x+128=4x+12 | | 3x/2-7=17 | | 14-(a-+2)=7+a | | -3/5+1/3u=-1/4 | | 16x÷4x=64 | | (7x+9)•(7x+9)=0 | | 1.5=9k | | 3x+2-×+7=16 | | -7+7k=35 | | 2a+18=12+4a | | 4x-7x+5=2x+25 | | -40-(-13)=x/8 | | 3^(x)=2187 | | 5t5^2+8t=30 | | 15x-10=5+10x | | 2(x-9)+2=14 | | -2/5(10x+20)=-44 | | (x+3)/8=-2 | | (1-4x)/3=3 | | 8400=40x+7000 | | 8c^2-18c=41 | | x/2=2.5/1.25 | | 4+3(x+5)=37 | | .30(x+90)+.10x=31 | | x/4=8.6 | | (2-4x)/3=-2 | | x+(2x)+(x+3x)=x+80 |

Equations solver categories